Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 35(1): 62-73, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38032172

RESUMO

Surface-embedded glycoproteins, such as the spike protein trimers of coronaviruses MERS, SARS-CoV, and SARS-CoV-2, play a key role in viral function and are the target antigen for many vaccines. However, their significant glycan heterogeneity poses an analytical challenge. Here, we utilized individual ion mass spectrometry (I2MS), a multiplexed charge detection measurement with similarities to charge detection mass spectrometry (CDMS), in which a commercially available Orbitrap analyzer is used to directly produce mass profiles of these heterogeneous coronavirus spike protein trimers under native-like conditions. Analysis by I2MS shows that glycosylation contributes to the molecular mass of each protein trimer more significantly than expected by bottom-up techniques, highlighting the importance of obtaining complementary intact mass information when characterizing glycosylation of such heterogeneous proteins. Enzymatic dissection to remove sialic acid or N-linked glycans demonstrates that I2MS can be used to better understand the glycan profile from a native viewpoint. Deglycosylation of N-glycans followed by I2MS analysis indicates that the SARS-CoV-2 spike protein trimer contains glycans that are more difficult to remove than its MERS and SARS-CoV counterparts, and these differences are correlated with solvent accessibility. I2MS technology enables characterization of protein mass and intact glycan profile and is orthogonal to traditional mass analysis methods such as size exclusion chromatography-multiangle light scattering (SEC-MALS) and field flow fractionation-multiangle light scattering (FFF-MALS). An added advantage of I2MS is low sample use, requiring 100-fold less than other methodologies. This work highlights how I2MS technology can enable efficient development of vaccines and therapeutics for pharmaceutical development.


Assuntos
Glicoproteína da Espícula de Coronavírus , Vacinas , Humanos , Glicoproteína da Espícula de Coronavírus/química , Espectrometria de Massas/métodos , Polissacarídeos/análise
2.
RSC Chem Biol ; 4(12): 1014-1036, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38033733

RESUMO

Pattern recognition receptors (PRRs) represent a re-emerging class of therapeutic targets for vaccine adjuvants, inflammatory diseases and cancer. In this review article, we summarize exciting developments in discovery and characterization of small molecule PRR modulators, focusing on Toll-like receptors (TLRs), NOD-like receptors (NLRs) and the cGAS-STING pathway. We also highlight PRRs that are currently lacking small molecule modulators and opportunities for chemical biology and therapeutic discovery.

3.
ACS Chem Biol ; 18(6): 1368-1377, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37172210

RESUMO

The characterization of microbiota mechanisms in health and disease has reinvigorated pattern recognition receptors as prominent targets for immunotherapy. Notably, our recent studies on Enterococcus species revealed peptidoglycan remodeling and activation of NOD2 as key mechanisms for microbiota enhancement of immune checkpoint inhibitor therapy. Inspired by this work and other studies of NOD2 activation, we performed in silico ligand screening and developed N-arylpyrazole dipeptides as novel NOD2 agonists. Importantly, our N-arylpyrazole NOD2 agonist is enantiomer-specific and effective at promoting immune checkpoint inhibitor therapy and requires NOD2 for activity in vivo. Given the significant functions of NOD2 in innate and adaptive immunity, these next-generation agonists afford new therapeutic leads and adjuvants for a variety of NOD2-responsive diseases.


Assuntos
Adjuvantes Imunológicos , Inibidores de Checkpoint Imunológico , Receptores de Reconhecimento de Padrão/metabolismo , Imunidade Adaptativa , Imunidade Inata , Proteína Adaptadora de Sinalização NOD2/metabolismo
4.
bioRxiv ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747725

RESUMO

The characterization of microbiota mechanisms in health and disease has reinvigorated pattern recognition receptors as prominent targets for immunotherapy. Notably, our recent studies on Enterococcus species revealed peptidoglycan remodeling and activation of NOD2 as key mechanisms for microbiota enhancement of immune checkpoint inhibitor therapy. Inspired by this work and other studies of NOD2 activation, we performed in silico ligand screening and developed N -arylpyrazole dipeptides as novel NOD2 agonists. Importantly, our N -arylpyrazole NOD2 agonist is enantiomer-specific, effective at promoting immune checkpoint inhibitor therapy and requires NOD2 for activity in vivo . Given the significant functions of NOD2 in innate and adaptive immunity, these next-generation agonists afford new therapeutic leads and adjuvants for a variety of NOD2-responsive diseases.

5.
ACS Chem Biol ; 15(9): 2324-2330, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32909738

RESUMO

The characterization of specific metabolite-protein interactions is important in chemical biology and drug discovery. For example, nuclear receptors (NRs) are a family of ligand-activated transcription factors that regulate diverse physiological processes in animals and are key targets for therapeutic development. However, the identification and characterization of physiological ligands for many NRs remains challenging, because of limitations in domain-specific analysis of ligand binding in cells. To address these limitations, we developed a domain-specific covalent chemical reporter for peroxisome proliferator-activated receptors (PPARs) and demonstrated its utility to screen and characterize the potency of candidate NR ligands in live cells. These studies demonstrate targeted and domain-specific chemical reporters provide excellent tools to evaluate endogenous and exogenous (diet, microbiota, therapeutics) ligands of PPARs in mammalian cells, as well as additional protein targets for further investigation.


Assuntos
Clorobenzenos/química , Indóis/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Sondas Moleculares/química , Nitrobenzenos/química , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Cisteína/química , Células HEK293 , Humanos , Ligantes , Receptores Ativados por Proliferador de Peroxissomo/química , Ligação Proteica , Domínios Proteicos
6.
Curr Opin Chem Biol ; 54: 19-27, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31790852

RESUMO

Understanding the molecular mechanisms of endogenous and environmental metabolites is crucial for basic biology and drug discovery. With the genome, proteome, and metabolome of many organisms being readily available, researchers now have the opportunity to dissect how key metabolites regulate complex cellular pathways in vivo. Nonetheless, characterizing the specific and functional protein targets of key metabolites associated with specific cellular phenotypes remains a major challenge. Innovations in chemical biology are now poised to address this fundamental limitation in physiology and disease. In this review, we highlight recent advances in chemoproteomics for targeted and proteome-wide analysis of metabolite-protein interactions that have enabled the discovery of unpredicted metabolite-protein interactions and facilitated the development of new small molecule therapeutics.


Assuntos
Metaboloma/fisiologia , Metabolômica/métodos , Proteínas/química , Proteínas/metabolismo , Proteoma/química , Proteoma/metabolismo , Proteômica/métodos , Humanos
7.
Nat Commun ; 9(1): 1870, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29760386

RESUMO

Selective modification of native proteins in live cells is one of the central challenges in recent chemical biology. As a unique bioorthogonal approach, ligand-directed chemistry recently emerged, but the slow kinetics limits its scope. Here we successfully overcome this obstacle using N-acyl-N-alkyl sulfonamide as a reactive group. Quantitative kinetic analyses reveal that ligand-directed N-acyl-N-alkyl sulfonamide chemistry allows for rapid modification of a lysine residue proximal to the ligand binding site of a target protein, with a rate constant of ~104 M-1 s-1, comparable to the fastest bioorthogonal chemistry. Despite some off-target reactions, this method can selectively label both intracellular and membrane-bound endogenous proteins. Moreover, the unique reactivity of N-acyl-N-alkyl sulfonamide enables the rational design of a lysine-targeted covalent inhibitor that shows durable suppression of the activity of Hsp90 in cancer cells. This work provides possibilities to extend the covalent inhibition approach that is currently being reassessed in drug discovery.


Assuntos
Técnicas de Química Analítica , Proteínas de Choque Térmico HSP90/química , Lisina/química , Coloração e Rotulagem/métodos , Sulfanilamidas/química , Animais , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Células HeLa , Compostos Heterocíclicos com 1 Anel/química , Humanos , Cinética , Camundongos , Mioblastos/química , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Sulfanilamidas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/química , Tetra-Hidrofolato Desidrogenase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...